If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+300
We move all terms to the left:
t-(-16t^2+300)=0
We get rid of parentheses
16t^2+t-300=0
a = 16; b = 1; c = -300;
Δ = b2-4ac
Δ = 12-4·16·(-300)
Δ = 19201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{19201}}{2*16}=\frac{-1-\sqrt{19201}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{19201}}{2*16}=\frac{-1+\sqrt{19201}}{32} $
| 6000-4000=25p | | -5(-9+6x)=15 | | 167-7x-3=108 | | 5y=36-y | | 8+2x+5x=6 | | 11x-2=7+2x | | 20=2w+1+w | | 7+-3t=5+t | | x^2+16x-104=0 | | 4(3-5x)=5 | | 5(2+y)-y=2(y+1) | | 2(x+4(-4(1-2x)=0 | | 49x2+3=19 | | x=2+-0.5 | | 12+(3x+6)=21 | | 0=2x-4+2 | | x^=441 | | 2x^2-33x-8=0 | | -4x2-15x=4=0 | | 12x-7=-3x | | 3x-2=9x-24 | | 5x2+x-6=0 | | 4(2x-2)=6(6x+2) | | 7x2-42=0 | | (3f+2)(4f–1)=0 | | 5m2-11m-12=0 | | 4x2–8x–5=0 | | 3x2–12x+12=0 | | 4x-79=-5x+137 | | 2+(2x−3)=3−2x | | 3(2y+1)=(y+2) | | x^2+8x-9=-16 |